$$
\begin{aligned}
& \text { Lesson 4: } \\
& \text { Multiple Regression }
\end{aligned}
$$

This Lesson's Goals

Learn about multiple regression
Make a figure for data for a multiple regression
Do a multiple regression in R
Summarise results in an R Markdown document

Math (Part 1)

$$
y_{i}=a+b x_{i}+e_{i}
$$

What if you have two variables?

$$
y_{i}=a+b x_{i}+e_{i}
$$

$$
y_{i}=a+b_{1} x_{1 i}+b_{2 x_{2 i}}+e_{i}
$$

$y_{i}=a+b_{1}\left|x_{1 i}+b_{2}\right| x_{2 i}+e_{i}$

$y_{i}=$ specific y value
a = intercept
$\mathrm{b}_{1}=$ slope of first variable
$\mathrm{x}_{1 i}=$ specific \times value for first variable
$\mathrm{b}_{2}=$ slope of second variable
$\mathrm{x}_{2 i}=$ specific \times value for second variable
$e_{i}=$ random variance or the residual

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+e_{i}$

Proportion of People with
Popular Names for 1901

What is 'a'?

complicated

"In conclusion, when you fit an additive model..., the parameters are the difference of the mean per category (of only one factor) and the intercept is the estimated value of the response variable for the first modalities of each factor under the assumption of additivity."

Stack Exchange, gui11aume emphasis original

R Code (Part 1)

| (Intercept) | -2.01854 | 0.08504 | -23.735 | $<2 e-16 ~$ | *** |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| century_halfsecond | -0.80612 | 0.12027 | -6.703 | $2.88 \mathrm{e}-09^{* * *}$ | |

simple regression with one variable (sex) lm(prop_log10_mean ~ sex)

Estimate Std. Error t value $\operatorname{Pr}(>\mid \mathrm{tl})$

| (Intercept) | -2.67791 | 0.09856 | -27.171 | $<2 e-16^{* * *}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| sexmale | 0.51263 | 0.13938 | 3.678 | $0.00043^{* * *}$ |

multiple regression with two variables

lm(prop_log10_mean ~ century_half + sex)
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-2.27486		0.09182	-24.776	$<2 \mathrm{e}-16$	***
century_halfsecond	-0.80612		0.10602	-7.603	$5.88 \mathrm{e}-11$	***
sexmale	0.51263		0.10602	4.835	$6.66 \mathrm{e}-06$	***

I thought the whole point of this was that there was an interaction.

This model doesn't account for that.

Let's run a

 multiple regression with an interaction.
Math (Part 2)

$$
\begin{gathered}
y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+e_{i} \\
y_{i}=a+b_{1} x_{1 i} \times b_{2} x_{2 i}+e_{i} \\
y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+ \\
b_{3} x_{1 i} x_{2 i}+e_{i} \\
\text { new }
\end{gathered}
$$

$y_{1}\left|=a+b_{1}\right| x_{1}\left|1+b_{2} x_{2}\right|+$
 $$
+b_{3} x_{i} x_{2} i+\sqrt{e_{1}}
$$

$y_{i}=$ specific y value
a = intercept
$b_{1}=$ slope of first variable
$\mathrm{x}_{1 i}=$ specific x value for first variable
$\mathrm{b}_{2}=$ slope of second variable
$\mathrm{x}_{2 i}=$ specific \times value for second variable
$\mathrm{b}_{3}=$ slope of third variable (interaction)
$e_{i}=$ random variance or the residual
$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
Proportion of People with
Popular Names for 1901

$$
\text { sex 白 } x_{2} 0 \text { 白 } x_{2} 1
$$

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
Proportion of People with
Popular Names for 1901

$$
\text { sex 白 } x_{2} 0 \text { 白 } x_{2} 1
$$

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

Proportion of People with
Popular Names for 1901
sex 白 $\mathrm{X}_{2} \mathrm{O}$ 白 $\mathrm{X}_{2} 1$

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

Proportion of People with
Popula Names for 1901

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
Proportion of People with
Popular Names for 1901

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

Proportion of People with Popular Names for 1901

$$
\operatorname{sex} \text { 白 } X_{2} 0 \text { 白 } X_{2} 1
$$

R Code (Part 2)

```
        yi =a+ b
    Call:
    Residuals:
    Min
Coefficients:
(Intercept)
century_halfsecond
sexmale
century_halfsecond:sexmale
Sulmate std. Lrror t value Pr(> |t|)
> head(resid(summary(popnames_interaction.lm)))
```


ml (ror

```
Call:
```

 lm(formula \(=\) prop_log10_mean \(\sim\) century_half \(/\) sex, dato = data_names)
 lm(formula \(=\) prop_log10_mean \(\sim\) century_half \(/\) sex, dato = data_names)
    ```
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' \(0.05^{\prime}\) ' 0.1 ', 1
Residual standard error: 0.4642 on 76 degrees of freedom
Multiple R-squared: 0.5395, Adjusted R-squared: 0.5213
F-statistic: 29.67 on 3 and 76 DF, p-value: 8.345e-13
```


$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

lm(prop_log10_mean ~ century_half * sex)

Call:
lm(formula = prop_log10_mean \sim century_half * sex, data $=$ data_names)

| Residuals: | | | | |
| :--- | ---: | ---: | ---: | ---: |
| Min | $1 Q$ | Median | $3 Q$ | Max |
| -0.92578 | -0.31259 | -0.03546 | 0.26132 | 1.15233 |

> head(resid(summary(popnames_interaction.lm)))
$-0.28065156-0.43747476 \quad 0.06919675$
$4 \quad 5 \quad 6$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$0.06507396 \quad 0.07114409 \quad 0.61794560$

| (Intercept) | -2.1669 | 0.1038 | -20.875 | $<2 \mathrm{e}-166^{* * *}$ |
| :--- | ---: | ---: | ---: | ---: |
| century_halfsecond | -1.0220 | 0.1468 | -6.962 | $1.04 \mathrm{e}-09^{* * *}$ |
| sexmale | 0.2967 | 0.1468 | 2.021 | 0.0468^{*} |
| century_halfsecond:sexmale | 0.4318 | 0.2076 | 2.080 | 0.0409^{*} |

Signif. codes: 0 '***' 0.001 ‘**' 0.01 ‘*' $0.05^{\prime} .{ }^{\prime} 0.1$ ', 1
Residual standard error: 0.4642 on 76 degrees of freedom
Multiple R-squared: 0.5395, Adjusted R-squared: 0.5213
F-statistic: 29.67 on 3 and 76 DF, p-value: $8.345 \mathrm{e}-13$


```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4642 on 76 degrees of freedom
Multiple R-squared: 0.5395, Adjusted R-squared: 0.5213
F-statistic: 29.67 on 3 and 76 DF, p-value: 8.345e-13

```

\section*{multiple regression without interaction}
\begin{tabular}{l|rrrrr} 
& \multicolumn{2}{c}{ Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)} \\
(Intercept) & -2.27486 & 0.09182 & \(-24.776<2 \mathrm{e}-16^{* * *}\) \\
century_halfsecond & -0.80612 & 0.10602 & -7.603 & \(5.88 \mathrm{e}-11^{* * *}\) \\
sexmale & 0.51263 & 0.10602 & 4.835 & \(6.66 \mathrm{e}-06^{* * *}\)
\end{tabular}

\section*{multiple regression with interaction}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Error & t value & \(\operatorname{Pr}(>|t|)\) & \\
\hline (Intercept) & -2.1669 & 0.1038 & -20.875 & < 2e-16 & *** \\
\hline century_halfsecond & -1.0220 & 0.1468 & -6.962 & \(1.04 \mathrm{e}-09\) & *** \\
\hline sexmale & 0.2967 & 0.1468 & 2.021 & 0.0468 & * \\
\hline century_halfsecond:sexmale & 0.4318 & 0.2076 & 2.080 & 0.0409 & * \\
\hline
\end{tabular}

\title{
multiple regression without interaction
}
\begin{tabular}{lrrrrr} 
& Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & -2.27486 & 0.09182 & \(-24.776<2 \mathrm{e}-16^{* * *}\) \\
century_halfsecond & -0.80612 & 0.10602 & -7.603 & \(5.88 \mathrm{e}-11^{* * *}\) \\
sexmale & 0.51263 & 0.10602 & 4.835 & \(6.66 \mathrm{e}-06^{* * *}\)
\end{tabular}

\section*{multiple regression with interaction}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{5}{*}{```
(Intercept)
century_halfsecond
sexmale
century_halfsecond:sexmale
```} & Estimate & & t value & \(\operatorname{Pr}(>|t|)\) & \\
\hline & -2.1669 & 0.1038 & -20.875 & < 2e-16 & *** \\
\hline & -1.0220 & 0.1468 & -6.962 & 1.04e-09 & ** \\
\hline & 0.2967 & 0.1468 & 2.021 & 0.0468 & * \\
\hline & 0.4318 & 0.2076 & 2.080 & 0.0409 & * \\
\hline
\end{tabular}

\section*{multiple regression with interaction "century_half" releveled}
\begin{tabular}{|r|rrrl}
\hline-3.1889 & 0.1038 & -30.721 & \(<2 \mathrm{e}-16\) & *** \\
\hline \hline 1.0220 & 0.1468 & 6.962 & \(1.04 \mathrm{e}-09^{* * *}\) \\
\hline 0.7285 & 0.1468 & 4.963 & \(4.15 \mathrm{e}-06^{* * *}\) \\
\hline-0.4318 & 0.2076 & -2.080 & \(0.0409^{*}\) \\
\hline
\end{tabular}

\section*{Lab}

\section*{Data set: Extinction Likelihood of Star Trek Alien Species}

Series: Is a given species more or less likely to become extinct in "Star Trek: The Original Series" or "Star Trek: The Next Generation?

Alignment: Is a given species more or less likely to become extinct if it is a friend or a foe of the Enterprise?

Series \(\times\) Alignment: Is there an interaction between these variables?
\[
\begin{aligned}
& \mathrm{y}_{\mathrm{i}}=\text { likely to become extinct or not } \\
& \mathrm{a}=?-\text { will get from model } \\
& \mathrm{b} 1=?-\text { will get from model } \\
& \mathrm{x} 1=\text { series } \\
& \mathrm{b} 2=?-\text { will get from model } \\
& \mathrm{x} 2=\text { alignment }
\end{aligned}
\]

\section*{dplyr, purrr}
data =
dplyr, purrr
data \(=\) list.files(
)

\section*{dplyr, purrr}
data \(=\) list.files(path = "data"

\section*{dplyr, purrr}

\section*{dplyr, purrr}

\section*{dplyr, purrr}

\section*{dplyr, purrr}

name files

\section*{dplyr, purrr}

\section*{dplyr, purrr}
data \(=\) list.files (path \(=\) "data",
full.names \(=T) \%>\%\)

verb

\section*{dplyr}
data_clean = data \%>\%

\section*{dplyr}
data_clean = data \%>\%

\section*{dplyr}
data_clean = data \%>\%

\section*{dplyr}
data_clean = data \%>\%
group_by(series, alignment, alien)
variables
to group by

\section*{dplyr}
data_clean = data \%>\%

\section*{dplyr}
data_clean = data \%>\%

variable to
order by
(ascending)

\section*{dplyr}
data_clean = data \%>\%

\section*{dplyr}
data_clean = data \%>\%

\section*{dplyr}
data_clean = data \%>\%

\section*{ggplot2}
extinct.plot =

\section*{ggplot2}
extinct.plot = ggplot(data_figs,
\[
\text { aes (} x=\text { series }
\]
\[
\begin{aligned}
& y=\text { perc_extinct, } \\
& \text { fill = alignment) }
\end{aligned}
\]

\section*{ggplot2}
extinct.plot = ggplot(data_figs,
\[
\text { aes (} x=\text { series, }
\]
variable for
color fill \(y=\) perc_extinct, fill = alignment)) + geom_bar(stat = "identity", position = "dodge")
make bars
side-by-side

\section*{ggplot2}
extinct.plot = ggplot(data_figs,
variable for color fill
aes (x = series,
color fill geom_bar(stat = "identity", position \(=\) "dodge") + ylim(0, 100) +
make bars
geom_hline(
side-by-side
add a
horizontal line

\section*{ggplot2}
extinct.plot = ggplot(data_figs,
variable for
\[
\text { aes }(\bar{x}=\text { series }
\]

location
of line

\section*{ggplot2}
extinct.plot = ggplot(data_figs,
aes (x = series,
variable for
fill geom_bar(stat = "identity",
ylim(0, 100) +
make bars side-by-side
add a
horizontal line

> Iocation
> of line
set colors
manually

\section*{ggplot2}
extinct.plot = ggplot(data_figs,
\[
\text { aes(} \mathrm{x}=\text { series, }
\]
variable for color fill
y = perc_extinct,
fill = alignment)) +
geom_bar(stat = "identity", position = "dodge") + \(y \lim (0,100)+\)
make bars side-by-side
add a
horizontal line
location
of line
set colors manually```

