Lesson 6, Part 2: Linear Mixed Effects Models

This Lesson's Goals

Learn about other methods for LMEMs

Update our LMEMs in R
Summarise results in an R Markdown document

But, in the ANOVA we got rid of our baseline issue, can I do that with an LMEM?

Math (Part 1)

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

 Percentage of Votes for Incumbentby Country in Civil War and Party of Incumbent

- Democrat • Republican

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

 Percentage of Votes for Incumbentby Country in Civil War and Party of Incumbent
$\begin{array}{cc}\text { - Democrat } \\ 0 & \text { Republican } \\ 1\end{array}$

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

 Percentage of Votes for Incumbentby Country in Civil War and Party of Incumbent

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
 Percentage of Votes for Incumbent by Country in Civil War and Party of Incumbent

$y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
 Percentage of Votes for Incumbent
 by Country in Civil War and Party of Incumbent

R Code (Part 1)

lme4

$$
y_{i}=a+a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}
$$

lmer(perc_votes incumbent ~
incumbent party_contrast * civil_war_contrast + (1+incumbent_party_contrast|state) + (1+civil_war_contrast|year))

Fixed effects:

(Intercept)

incumbent_party_contrast
civil_war_contrast
incumbent_party_contrast:civil_war_contrast 18.39637

Estimate Std. Error t value
$52.04864 \quad 3.1134616 .717$
$2.92546 \quad 6.37541 \quad 0.459$
$0.04273 \quad 2.77575 \quad 0.015$

LMEM with dummy coding

Fixed effects:
(Intercept)
incumbent_partyRepublican
civil_warConfederacy
incumbent_partyRepublican:civil_warConfederacy

Estimate Std. Error t value

55.164	5.591	9.866
-6.273	8.012	-0.783
-9.155	4.183	-2.189
18.396	6.189	2.972

LMEM with contrast coding

Fixed effects:
(Intercept)
incumbent_party_contrast civil_war_contrast
incumbent_party_contrast:civil_war_contrast
Estimate Std. Error t value

52.04864	3.11346	16.717
2.92546	6.37541	0.459
0.04273	2.77575	0.015
18.39637	6.18901	2.972

How do I get p-values out of this?

Math (Part 2)

very good fit

not as good fit

R Code (Part 2)
$y_{i}=a+a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$ lmer (perc_votes_incumbent ~ incumbent_party_contrast * civil_war_contrast + (1+incumbent_party_contrast|state) + (1+civil_war_contrast|year), REML = F)

$$
\begin{gathered}
y_{i}=a+a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{3} x_{1 i} x_{2 i} \\
-b_{1} x_{1 i}+e_{i}
\end{gathered}
$$

lmer (perc_votes_incumbent ~ incumbent_party_contras ${ }^{\text {F }}$ * civil_war_contrast - incumbent_party_contrast + (1+incumbent_party_contrast|state)

+ (1+civil_war_contrast|year), REML = F)

$$
y_{i}=a+a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}
$$

$y_{i}=a+a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{3} x_{1 i} x_{2 i}$ $-b_{1} X_{1 i}+e_{i}$
anova(m1, m2_party)

LMEM summary

Fixed effects:
(Intercept)
incumbent_party_contrast civil_war_contrast

Estimate Std. Error t value

52.04934	2.70659	19.231
2.92405	5.57867	0.524
0.04413	2.43834	0.018
18.39355	5.57298	3.300

model comparison for incumbent party

	Df	AIC	BIC	logLik	deviance	Chisq Chi	Df $\operatorname{Pr}(>$ Chisq)	
m2_party	10	1153.5	1185.1	-566.74	1133.5			
m1	11	1155.2	1190.0	-566.61	1133.2	0.2706	1	0.6029

model comparison for civil war
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
m3_country $101153.21184 .9-566.61 \quad 1133.2$
$\begin{array}{llllllll}\mathrm{m} 1 \quad 11 & 1155.2 & 1190.0 & -566.61 & 1133.2 & 3 \mathrm{e}-04 & 1 & 0.98\end{array} \quad \begin{array}{llll} & & & \\ \text { model comparison for incumbent party x civil war }\end{array}$

	Df	AIC	BIC	logLik deviance Chisq Chi	Df	$\operatorname{Pr}(>C h i s q)$	
m4_partyxcountry	10	1160.8	1192.4	-570.39	1140.8		
m1	11	1155.2	1190.0	-566.61	1133.2	7.567	1

Lab

Data set: Stroop Task

Congruency: Are responses to incongruent trials less accurate and slower than to congruent trials?

Experiment half: Are responses more accurate and faster in the second half of the experiment then the first half of the experiment?

Congruency x Experiment half: Is there an interaction between these variables?

```
accuracy (logistic)
logit }\mp@subsup{\textrm{p}}{\textrm{i}}{}=\mathrm{ accuracy
x1 = congruency
x2 = experiment half
r1 = participant
r2 = item
```

reaction times (linear)
$y_{i}=$ reaction times
x1 = congruency
x2 = experiment half
r1 = participant
r2 = item

dplyr

data_accuracy_stats = data_accuracy_clean

dplyr

data_accuracy_stats = data_accuracy_clean \%>\% mutate(congruency_contrast =

dplyr

data_accuracy_stats = data_accuracy_clean \%>\%
mutate(congruency_contrast =

dplyr

data_accuracy_stats = data_accuracy_clean \%>\% mutate(congruency_contrast =

call original
variable

dplyr

data_accuracy_stats = data_accuracy_clean \%>\% mutate(congruency_contrast =

dplyr

data_accuracy_stats = data_accuracy_clean \%>\%
mutate(congruency_contrast =

dplyr

data_accuracy_stats = data_accuracy_clean \%>\%
mutate(congruency_contrast =

