Lesson 6, Part 2: Linear Mixed Effects Models

This Lesson's Goals

Learn about other methods for LMEMs

Update our LMEMs in R

Summarise results in an R Markdown document

But, in the ANOVA we got rid of our baseline issue, can I do that with an LMEM?

Math (Part 1)

$y_i = a + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{1i} x_{2i} + e_i$ Percentage of Votes for Incumbent

by Country in Civil War and Party of Incumbent

R Code (Part 1)

 $y_i = a + a_s + a_y + (b_{s1} + b_1)x_{1i} + (b_{y1} + b_2)x_{2i} + b_3x_{1i}x_{2i} + e_i$

lmer(perc_votes_incumbent ~
incumbent_party_contrast * civil_war_contrast
+ (1+incumbent_party_contrast|state)
+ (1+civil_war_contrast|year))

Fixed effects:

 Estimate Std. Error t value

 (Intercept)
 52.04864
 3.11346
 16.717

 incumbent_party_contrast
 2.92546
 6.37541
 0.459

 civil_war_contrast
 0.04273
 2.77575
 0.015

 incumbent_party_contrast:civil_war_contrast
 18.39637
 6.18901
 2.972

LMEM with dummy coding

Fixed effects:

	Estimate Std.	Error	t value
(Intercept)	55.164	5.591	9.866
incumbent_partyRepublican	-6.273	8.012	-0.783
civil_warConfederacy	-9.155	4.183	-2.189
<pre>incumbent_partyRepublican:civil_warConfederacy</pre>	18.396	6.189	2.972

LMEM with contrast coding

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	52.04864	3.11346	16.717
incumbent_party_contrast	2.92546	6.37541	0.459
civil_war_contrast	0.04273	2.77575	0.015
<pre>incumbent_party_contrast:civil_war_contrast</pre>	18.39637	6.18901	2.972

How do I get p-values out of this?

Math (Part 2)

very good fit

R Code (Part 2)

$Y_i = a + a_s + a_y + (b_{s1} + b_1)X_{1i} + (b_{y1} + b_2)X_{2i} + b_3X_{1i}X_{2i} + e_i$

lmer(perc_votes_incumbent ~
incumbent_party_contrast * civil_war_contrast
 + (1+incumbent_party_contrast|state)
 + (1+civil war contrast|year), REML = F)

LMEM summary

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	52.04934	2.70659	19.231
incumbent_party_contrast	2.92405	5.57867	0.524
civil_war_contrast	0.04413	2.43834	0.018
<pre>incumbent_party_contrast:civil_war_contrast</pre>	18.39355	5.57298	3.300

model comparison for incumbent party

	Df	AIC	BIC	logLik	deviance	Chisq	Chi	Df	<pre>Pr(>Chisq)</pre>
m2_party	10	1153.5	1185.1	-566.74	1133.5				
ml	11	1155.2	1190.0	-566.61	1133.2	0.2706		1	0.6029

model comparison for civil war

 Df
 AIC
 BIC
 logLik deviance
 Chisq
 Chi Df
 Pr(>Chisq)

 m3_country
 10
 1153.2
 1184.9
 -566.61
 1133.2

 m1
 11
 1155.2
 1190.0
 -566.61
 1133.2
 3e-04
 1
 0.9856

model comparison for incumbent party x civil war

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) m4_partyxcountry 10 1160.8 1192.4 -570.39 1140.8 m1 11 1155.2 1190.0 -566.61 1133.2 7.567 1 0.005945

Lab

Data set: Stroop Task

<u>Congruency:</u> Are responses to incongruent trials less accurate and slower than to congruent trials?

Experiment half: Are responses more accurate and faster in the second half of the experiment then the first half of the experiment?

Congruency x Experiment half: Is there an interaction between these variables?

accuracy (logistic)

logit $p_i = accuracy$

- x1 = congruency
- x2 = experiment half
- r1 = participant
- r2 = item

reaction times (linear)

- y_i = reaction times
- x1 = congruency
- x2 = experiment half
- r1 = participant
- r2 = item

source: real students!

data_accuracy_stats = data_accuracy_clean

data_accuracy_stats = data_accuracy_clean %>%
 mutate(congruency_contrast =

make new variable

data_accuracy_stats = data_accuracy_clean %>% mutate(congruency contrast = ifelse()) make new variable make condition statement

data accuracy stats = data accuracy clean %>% mutate(congruency contrast = ifelse(congruency)) make new variable make condition statement call original variable

data accuracy stats = data accuracy clean %>% mutate(congruency contrast = ifelse(congruency == "con" make new variable make condition statement call original variable reference level

