Lesson 6, Part 1: Linear Mixed Effects Models

This Lesson's Goals

Learn about linear mixed effects models (LMEM)

Make figures for data for LMEMs

Run some preliminary LMEMs in R

Summarise results in an R Markdown document

This Lesson's Goals

Learn about linear mixed effects models (LMEM)

Make figures for data for LMEMs

Run some preliminary LMEMs in R

Summarise results in an R Markdown document

End of Lesson 5 Questions

But aren't percentages *really* just summarized count data?

But we had to drop a bunch of Union states, isn't that a problem?

But Alabama was missing one Democrat data point, isn't it not balanced?

But what about the variance for 'year', shouldn't we try and account for that too?

generalized linear mixed effects models

Math (Part 1)

How do I add factors for random variance? (i.e. things we're not directly testing)

 $V_i = a + b_1 X_{1i} + b_2 X_{2i} + b_2 X_$ $D_3X_{1i}X_{2i} + e_i$ $Y_i = a + a_s +$ $b_1 X_{1i} + b_2 X_{2i} + b_3 X_{1i} X_{2i} + e_i$

random effect

s = state

 $V_i = a + b_1 X_{1i} + b_2 X_{2i} + b_2 X_$ $D_{3}X_{1}X_{2}i + e_{i}$ $Y_i = a + a_s +$ $b_1 X_{1i} + b_2 X_{2i} + b_3 X_{1i} X_{2i} + e_i$

random intercept

s = state

 $V_i = a + b_1 X_{1i} + b_2 X_{2i} + b_2 X_$ $D_{3}X_{1i}X_{2i} + e_{i}$ $Y_i = a + a_s + a_y +$ $b_1 X_{1i} + b_2 X_{2i} + b_3 X_{1i} X_{2i} + e_i$ random random intercept #1 intercept #2 s = statey = year

In this paper we tested the effect of time on weight. A total of 50 baby chicks were included in the study.

mixed

effects

ANOVA language

LMEM language

- weight dependent variable dependent variable
- time independent variable
- **baby chick** error variable

- y_i = specific y value
- a = intercept
- a_s = random intercept #1 for specific level
- a_y = random intercept #2 for specific level
- $b_1 = slope of first variable$

x_{1i} = specific x value for first variable

 $b_2 =$ slope of second variable

- x_{2i} = specific x value for second variable
- b₃ = slope of third variable (interaction)
- e_i = random variance or the residual

$y_i = a + a_s + a_y + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{1i} x_{2i} + e_i$ Percentage of Votes for Incumbent by Country in Civil War and Party of Incumbent Democrat Republican 100 Percentage of vote for incumbent Rhode Island • 75 Rhode Island 2 50 Ŏ Rhode Island 25 Rhode Island 0.

Union Confederacy Civil War country

But, at the end of the last lesson we said this was bad, because it was a percentage of a count?

 $V_i = a + a_s + a_y +$ $b_1 X_{1i} + b_2 X_{2i} + b_3 X_{1i} X_{2i} + e_i$

 $log[p/(1-p)]_i = a + a_s + a_y$ + $b_1 X_{1i}$ + $b_2 X_{2i}$ + $b_3 X_{1i} X_{2i}$ + e_i logistic regression -> generalized linear mixed effects model

R Code (Part 1)

lme4

lme4

$y_i = a + a_s + a_y + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{1i} x_{2i} + e_i$

lmer(perc_votes_incumbent ~ incumbent_party * civil_war + (1|state) + (1|year))

			A			
	(Interce	ept)	incumbent_partyRepublic	an civil_warConfede	eracy	incumbent_partyRepublican:civil_warConfederacy
Alabama	55.16	5364	-6.2727	27 -8.9	8988	18.23079
Arkansas	s 55.16	5364	-6.2727	27 -8.9	8988	18.23079
Connecti	icut 55.16	5364	-6.2727	27 -8.9	8988	18.23079
Delaware	e 55.16	5364	-6.2727	27 -8.9	8988	18.23079
Florida	55.16	5364	-6.2727	27 -8.9	8988	18.23079
Georgia	55.16	5364	-6.2727	27 -8.9	8988	18.23079
	(Intercept)	incu	umbent_partyRepublican c	ivil_warConfederacy	/ incu	umbent_partyRepublican:civil_warConfederacy
1964	62.33514		-6.272727	-8.98988	3	18.23079
1972	65.93855		-6.272727	-8.98988	3	18.23079
1980	48.65702		-6.272727	-8.98988	3	18.23079
1984	60.95054		-6.272727	-8.98988	3	18.23079
1992	41.19320	1	-6.272727	-8.98988	3	18.23079
1996	54.63202		-6.272727	-8.98988	3	18.23079

But, in the ANOVA we accounted for the fact that a variable could be within- or between-subject?

Math (Part 2)

 $Y_i = a + a_s + a_v +$ $b_1 X_{1i} + b_2 X_{2i} + b_3 X_{1i} X_{2i} + e_i$

 $Y_i = a + a_s + a_y +$ $(b_{s1}+b_1)X_{1i} + (b_{y1}+b_2)X_{2i} +$ $b_{3}X_{1}X_{2}i + e_{i}$ random slope random slope

s = state

y = year

- a = intercept
- $a_s = random intercept #1$
- a_y = random intercept #2
- $b_{s1} = slope of r.e. #1$
- $b_1 = slope of variable #1$

- $b_{y1} = slope of r.e. #2$
- $b_2 = slope of variable #2$

 $x_{2i} = x$ value for variable #2

- $b_3 =$ slope of variable #3
- e_i = random variance

R Code (Part 2)

lme4

y_i = a + a_s + a_y + (b_{s1}+b_1)x_{1i} + (b_{y1}+b_2)x_{2i} + b_3x_{1i}x_{2i} + e_i Imer(perc_votes_incumbent ~ incumbent_party * civil_war + (1+incumbent_party state) + (1+civil_war_year))

Fixed effects:

	Estimate Std.	Error	t value
(Intercept)	55.164	5.591	9.866
incumbent_partyRepublican	-6.273	8.012	-0.783
civil_warConfederacy	-9.155	4.183	-2.189
<pre>incumbent_partyRepublican:civil_warConfederacy</pre>	18.396	6.189	2.972

lme4

 $y_i = a + a_s + a_y + (b_{s1} + b_1)x_{1i} + (b_{y1} + b_2)x_{2i} + b_3x_{1i}x_{2i} + e_i$

lmer(perc_votes_incumbent ~ incumbent_party * civil_war + (1+incumbent_party|state) + (1+civil_war|year))

	(Intercept)) incumbent_partyRepublic	an civil_warConfedera	cy incumbent_partyRepublican:civil_warConfederacy
Alabama	53.19379	-2.5371	93 -9.1554	57 18.39637
Arkansas	57.53616	-10.7718	74 -9.1554	57 18.39637
Connecticut	54.46253	-4.9431	72 -9.1554	57 18.39637
Delaware	54.20025	-4.4458	09 -9.1554	57 18.39637
Florida	55.77018	-7.4229	53 -9.1554	57 18.39637
Georgia	55.78214	4 -7.4456	37 -9.1554	57 18.39637
-				
(1	ntercept) n	cumbent_partyRepublican	ivil_warConfederacy	ncumbent_partyRepublican:civil_warConfederacy
1964	67.30095	-6.272727	-19.271213	18.39637
1972	65.15338	-6.272727	-7.413460	18.39637
1980	42.24166	-6.272727	3.503531	18.39637
1984	63.33161	-6.272727	-13.732613	18.39637
1992	41.22931	-6.272727	-9.482726	18.39637
1996	53,79614	-6.272727	-7.361084	18,39637

LMEM with only random intercepts

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	55.164	4.483	12.305
incumbent_partyRepublican	-6.273	6.340	-0.989
civil_warConfederacy	-8.990	1.444	-6.226
incumbent_partyRepublican:civil_warConfederacy	18.231	2.036	8.955

LMEM with only random intercepts and slopes

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	55.164	5.591	9.866
incumbent_partyRepublican	-6.273	8.012	-0.783
civil_warConfederacy	-9.155	4.183	-2.189
<pre>incumbent_partyRepublican:civil_warConfederacy</pre>	18.396	6.189	2.972

Lab

Data set: Stroop Task

source: real students!

Say the color of the ink *not* the written word.

blue

Say the color of the ink *not* the written word.

blue

Say the color of the ink *not* the written word.

blue

word = ink color congruent trial

word ≠ ink color incongruent trial

Data set: Stroop Task

<u>Congruency:</u> Are responses to incongruent trials less accurate and slower than to congruent trials?

Experiment half: Are responses more accurate and faster in the second half of the experiment than the first half of the experiment?

Congruency x Experiment half: Is there an interaction between these variables?

accuracy (logistic)

logit $p_i = accuracy$

- x1 = congruency
- x2 = experiment half
- r1 = subject
- r2 = item

reaction times (linear)

- y_i = reaction times
- x1 = congruency
- x2 = experiment half
- r1 = subject
- r2 = item

source: real students!

data_clean = data_results

```
data_clean = data_results %>%
    rename(trial_number = SimpleRTBLock.TrialNr.)
```

change variable name

```
data_clean = data_results %>%
    rename(trial_number = SimpleRTBLock.TrialNr.) %>%
    rename(congruency = Congruency) %>%
    rename(correct_response = StroopItem.CRESP.) %>%
    rename(given_response = StroopItem.RESP.) %>%
    rename(accuracy = StroopItem.ACC.) %>%
    rename(rt = StroopItem.RT.) %>%
```

change variable name

```
data clean = data results %>%
       rename(trial number = SimpleRTBLock.TrialNr.) %>%
       rename(congruency = Congruency) %>%
       rename(correct response = StroopItem.CRESP.) %>%
       rename(given response = StroopItem.RESP.) %>%
       rename(accuracy = StroopItem.ACC.) %>%
       rename(rt = StroopItem.RT.) %>%
       select(subject id, block, item, trial_number,
                     congruency, correct response,
                     given response, accuracy, rt)
                      choose subset
change
                        of variables
variable
 name
```


