Lesson 6, Part 1: Linear Mixed Effects Models

This Lesson's Goals

Learn about linear mixed effects models (LMEM)

Make figures for data for LMEMs

Run some preliminary LMEMs in R

Summarise results in an R Markdown document

This Lesson's Goals

Learn about linear mixed effects models (LMEM)

Make figures for data for LMEMs

Run some preliminary LMEMs in R
Summarise results in an R Markdown document

End of Lesson 5 Questions

But aren't percentages really just summarized count data?

But we had to drop a bunch of Union states, isn't that a problem?

But Alabama was missing one Democrat data point, isn't it not balanced?

But what about the variance for 'year', shouldn't we try and account for that too?
generalized linear mixed effects models

Math (Part 1)

$$
\begin{gathered}
y_{i}=a+b_{1} x_{1 i}+b_{2 X_{2 i}}+ \\
b_{3} x_{1 i} x_{2 i}+e_{i}
\end{gathered}
$$ How do I add factors for random variance?

(i.e. things we're not directly testing)

$$
\begin{gathered}
y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+ \\
b_{3} x_{1 i} x_{2 i}+e_{i}
\end{gathered}
$$

$$
y_{i}=a+\boxed{a_{s}}+
$$

$$
b_{1} x_{1 i}+b_{2} x_{2 i}+\hat{b}_{3} x_{1 i} x_{2 i}+e_{i}
$$

random

effect
$s=$ state

$$
\begin{gathered}
y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+ \\
b_{3} x_{1 i} x_{2 i}+e_{i}
\end{gathered}
$$

$$
y_{i}=a+a_{s}+
$$

$$
b_{1} x_{1 i}+b_{2} x_{2 i}+\hat{b}_{3} x_{1 i} x_{2 i}+e_{i}
$$

random
intercept
$s=$ state

$$
\begin{gathered}
y_{i}=a+b_{1} x_{1 i}+b_{2} x_{2 i}+ \\
b_{3} x_{1 i} x_{2 i}+e_{i}
\end{gathered}
$$

$$
y_{i}=a+\boxed{a_{s}}+\boxed{a y}+
$$

$$
b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} X_{1 i} x_{2 i}+e_{i}
$$

intercept \#1 intercept \#2

$$
s=\text { state } \quad y=\text { year }
$$

In this paper we tested the effect of time on weight. A total of 50 baby chicks were included in the study.

ANOVA language

weight
time
baby chick error variable

LMEM language

dependent variable
fixed effect
random effect

$y_{i}=$ specific y value
a = intercept
$\mathrm{a}_{\mathrm{s}}=$ random intercept \#1 for specific level
$\mathrm{a}_{\mathrm{y}}=$ random intercept \#2 for specific level
$b_{1}=$ slope of first variable
$\mathrm{b}_{2}=$ slope of second variable
$x_{1 i}=$ specific \times value for first variable
$x_{2 i}=$ specific \times value for second variable
$b_{3}=$ slope of third variable (interaction)
$e_{i}=$ random variance or the residual

$y_{i}=a+a_{s}+a_{y}+b_{1 x_{1 i}}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

Percentage of Votes for Incumbent by Country in Civil War and Party of Incumbent

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

 Percentage of Votes for Incumbentby Country in Civil War and Party of Incumbent

- Democrat - Republican

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
Percentalge of Votes for Incumbent by Country in Civil War and Party of Incumbent

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
Percentage of Votes $f b r$ Incumbent by Country in Civil War and Party of Incumbent

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
 Percentage of Votes for Incumbent by Country in Civil War and Party of Incumbent

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2 x_{2 i}}+b_{3} x_{1 i} x_{2 i}+e_{i}$

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

But, at the end of the last lesson we said this was bad, because it was a percentage of a count?

$$
\begin{gathered}
y_{i}=a+a_{s}+a_{y}+ \\
b_{1} x_{1 i}+b_{2 X_{2 i}}+b_{3} X_{1 i} x_{2 i}+e_{i} \\
\log [0 /(1-0)] i \\
+a+a_{s}+a_{y} \\
+b_{1} X_{1 i}+b_{2} X_{2 i} \\
\text { generalized linear mixed effects model }
\end{gathered}
$$

R Code (Part 1)

lme4

$y_{i}=a+a_{s}+a_{y}+b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$ lmer perécoptes_incunbent ~ incumbent_paity * civil_war Fixed effects:
(Intercept)
incumbent_partyRepublican civil_warConfederacy incumbent_partyRepublican:civil_warConfederacy

Astinate Std. Error t value $55.164 \quad 4.483 \quad 12.305$
-6.273
-8.990
18.231
$6.340-0.989$
$1.444-6.226$
$2.036 \quad 8.955$

lme4

$y_{i}=a+a_{s}+a_{y}+b_{1 x_{1 i}}+b_{2} x_{2 i}+b_{3 x_{1 i} x_{2 i}}+e_{i}$

lmer(perc_votes_incumbent ~ incumbent_party * civil_war
 $+(1 \mid$ state $)$
 + (1|year))

	Intercept)	incumbent_partyRepublican civil_warConfederacy	incumbent_partyRepublican:civil_warConfederacy	
	Alabama	55.16364	-6.272727	-8.98988
Arkansas	55.16364	-6.272727	-8.98988	18.23079
Connecticut	55.16364	-6.272727	-8.98988	18.23079
Delaware	55.16364	-6.272727	-8.98988	18.23079
Florida	55.16364	-6.272727	-8.98988	18.23079
Georgia	55.16364	-6.272727	-8.98988	18.23079
				18.23079

	(Intercept)	ncumbent_partyRepublican civil_warConfederacy	incumbent_partyRepublican:civil_warConfederacy	
1964	62.33514	-6.272727	-8.98988	18.23079
1972	65.93855	-6.272727	-8.98988	18.23079
1980	48.65702	-6.272727	-8.98988	18.23079
1984	60.95054	-6.272727	-8.98988	18.23079
1992	41.19320	-6.272727	-8.98988	18.23079
1996	54.63202	-6.272727	-8.98988	18.23079

But, in the ANOVA we accounted for

 the fact that a variable could be within- or between-subject?
Math (Part 2)

$$
y_{i}=a+a_{s}+a_{y}+
$$

$b_{1} x_{1 i}+b_{2} x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$
$y_{i}=a+a_{s}+a_{y}+$
$\left(\sqrt{b_{s 1}}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+$

$\overline{ }$

random slope
s = state
y = year

$y_{i}=a+a_{s}+a_{y}+$
 $\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+$ $b_{3} x_{1 i} x_{2 i}+e_{i}$
 $y_{i}=$ specific y value $\quad x_{1 i}=x$ value for variable \#1
 a = intercept
 by1 = slope of r.e. \#2

$\mathrm{a}_{\mathrm{s}}=$ random intercept \#1
$\mathrm{b}_{2}=$ slope of variable \#2
$a_{y}=$ random intercept \#2
$b_{s 1}=$ slope of r.e. \#1
b_{3} = slope of variable \#3
b_{1} = slope of variable \#1
$e_{i}=$ random variance

$$
y_{i}=a+a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}
$$


```
yi=a+ as}+\mp@subsup{a}{y}{}+(\mp@subsup{b}{s1}{}+\mp@subsup{b}{1}{})\mp@subsup{x}{1i}{}+(\mp@subsup{b}{y1}{}+\mp@subsup{b}{2}{})\mp@subsup{x}{2i}{}+\mp@subsup{b}{3}{}\mp@subsup{x}{1i}{}\mp@subsup{x}{2i}{}+\mp@subsup{e}{i}{
    Percentage of Votes for Incumbent
by Country in Civil War and Party of Incumbent
*)
```

R Code (Part 2)

lme4

$$
\begin{aligned}
& y_{i}=a+ a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{33} x_{1 i} x_{2 i}+e_{i} \\
& \begin{array}{l}
\text { mer (pere } \\
\text { incumbent_party }+ \text { anctumbent } \sim
\end{array} \\
&+(1+\text { incumbent party } \\
&+(1+\text { civil war year }))
\end{aligned}
$$

Fixed effects:
(Intercept)
incumbent_partyRepublican civil_warConfederacy incumbent_partyRepublican:civil_warConfederacy

Estimate Std. Error t value $55.164 \quad 5.591 \quad 9.866$
$-6.273 \quad 8.012-0.783$
$-9.155 \quad 4.183-2.189$
18.396
$6.189 \quad 2.972$

lme4

$y_{i}=a+a_{s}+a_{y}+\left(b_{s 1}+b_{1}\right) x_{1 i}+\left(b_{y 1}+b_{2}\right) x_{2 i}+b_{3} x_{1 i} x_{2 i}+e_{i}$

lmer (perc_votes_incumbent ~ incumbent_party * civil_war + (1+incumbent_party|state) + (1+civil_war|year))

	(Intercept)	ncumbent_partyRepublican	Fivil_warConfederacy	ncumbent_partyRepublican:civil_warConfederacy
Alabama	53.19379	-2.537193	-9.155457	18.39637
Arkansas	57.53616	-10.771874	-9.155457	18.39637
Connecticut	54.46253	-4.943172	-9.155457	18.39637
Delaware	54.20025	-4.445809	-9.155457	18.39637
Florida	55.77018	-7.422953	-9.155457	18.39637
Georgia	55.78214	-7.445637	-9.155457	18.39637

	(Intercept)	ncumbent_partyRepublican	ivil_warConfederacy	ncumbent_partyRepublican:civil_warConfederacy
1964	67.30095	-6.272727	-19.271213	18.39637
1972	65.15338	-6.272727	-7.413460	18.39637
1980	42.24166	-6.272727	3.503531	18.39637
1984	63.33161	-6.272727	-13.732613	18.39637
1992	41.22931	-6.272727	-9.482726	18.39637
1996	53.79614	-6.272727	-7.361084	18.39637

LMEM with only random intercepts

Fixed effects:

(Intercept)

incumbent_partyRepublican
civil_warConfederacy
incumbent_partyRepublican:civil_warConfederacy

Estimate	Std. Error	t value	
55.164	4.483	12.305	
-6.273		6.340	-0.989
-8.990		1.444	-6.226
18.231	2.036	8.955	

LMEM with only random intercepts and slopes

Fixed effects:

(Intercept)

incumbent_partyRepublican
civil_warConfederacy
incumbent_partyRepublican:civil_warConfederacy

Estimate	Std. Error	t value	
55.164	5.591	9.866	
-6.273	8.012	-0.783	
-9.155		4.183	-2.189
18.396	6.189	2.972	

Lab

Data set: Stroop Task

Say the color of the ink not the written word.

blue

Say the color of the ink not the written word.

blue

Say the color of the ink not the written word.

blue

word $=$ ink color
congruent trial

blue

word $=$ ink color incongruent trial

Data set: Stroop Task

Congruency: Are responses to incongruent trials less accurate and slower than to congruent trials?

Experiment half: Are responses more accurate and faster in the second half of the experiment than the first half of the experiment?

Congruency x Experiment half: Is there an interaction between these variables?

```
accuracy (logistic)
logit pi = accuracy
x1 = congruency
x2 = experiment half
r1 = subject
r2 = item
```

reaction times (linear)
$y_{i}=$ reaction times
x1 = congruency
x2 = experiment half
r1 = subject
r2 $=$ item

dplyr

data_clean = data_results

dplyr

data_clean $=$ data_results $\%>\%$
${ }_{\wedge}$ rename(trial_number $=$ SimpleRTBLock.TrialNr.)
change
variable
name

dplyr

data_clean = data_results \%>\%

```
                rename(trial_number = SimpleRTBLock.TrialNr.) %>%
rename(congruency = Congruency) %>%
rename(correct_response = StroopItem.CRESP.) %>%
rename(given_response = StroopItem.RESP.) %>%
rename(accuracy = StroopItem.ACC.) %>%
rename(rt = StroopItem.RT.) %>%
```


dplyr

data_clean = data_results \%>\%

RColorBrewer cols $=$ brewer.pal(

RColorBrewer
 cols $=$ brewer.pal(5

call to make palette

number of colors

> cols
[1] "\#E66101" "\#FDB863" "\#F7F7F7" "\#B2ABD2" "\#5E3C99"

RColorBrewer

 cols = brewer.pal(5, "PuOr") col_con $=$ cols[1]call to make palette

$$
\begin{array}{cc}
\text { number of } & \text { palette } \\
\text { colors } & \text { name }
\end{array}
$$

```
> cols
```

[1] "\#E66101" "\#FDB863" "\#F7F7F7" "\#B2ABD2" "\#5E3C99"

RColorBrewer

cols = brewer.pal(5, "PuOr")
col_con $=$ cols[1]
call to

[1] "\#E66101" "\#FDB863" "\#F7F7F7" "\#B2ABD2"

