$$
\begin{aligned}
& \text { Lesson 3: } \\
& \text { Logistic Regression }
\end{aligned}
$$

This Lesson's Goals

Learn about logistic regression
Make a figure for data from a logistic regression

Do a logistic regression in R
Summarise results in an R Markdown document

Math

linear regression

predict continuous variables
talk about in regards to mean and standard deviation

predict specific y-value given specific x-value

logistic regression

predict
categorical variables

talk about in regards to counts

predict probability y-level given specific x-value

Probability

Probability in Logit Space

$$
\begin{gathered}
y_{i}=a+b x_{i}+e_{i} \\
\operatorname{logit} p_{i}=a+b x_{i} \\
\log [p /(1-p)]_{i}=a+b x_{i} ?
\end{gathered}
$$

$$
\log [p /(1-p)] i=a+b x_{i}
$$

$\log [p /(1-p)]_{i}=$ probability of specific y-level (F or T) (dependent variable)
a = intercept
b = slope
$x_{i}=$ specific x-values (independent variable)

$$
y_{i}=a+b x_{i}+e_{i}
$$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight Over Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

Chick Weight goer Time

$\log [p /(1-p)]_{i}=a+b x_{i}$

$\log [p /(1-p)]_{i}=a+b x_{i}$

INPUT
Probability

MODEL COEFFIECIENTS

Probability in Logit Space

R Code

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 801.22 on 577 degrees of freedom Residual deviance: 347.16 on 576 degrees of freedom AIC: 351.16

Lab

Data set: The San Francisco Giants 2010 Baseball Season

Data set: The San Francisco Giants 2010 Baseball Season

Full Season: Did the Giants win more games before or after the All-Star break?

Buster Posey: Are the Giant's more likely to win in games where Buster Posey was walked at least once?

Full Season

logit $\mathrm{p}_{\mathrm{i}}=$ win or loss
a = ? - from model
b = ? - from model
$x_{i} \quad=$ All Star break

Buster Posey

$$
\begin{array}{ll}
\text { logit } \mathrm{p}_{\mathrm{i}} & =\text { win or loss } \\
\mathrm{a} & =? \text { - from model } \\
\mathrm{b} & =\text { ? from model } \\
\mathrm{x}_{\mathrm{i}} & =\text { walked }
\end{array}
$$

dplyr

data_clean = data

dplyr

data_clean = data \%>\%

dplyr

dplyr

data clean = data \%>\%

new
variable

dplyr

data clean $=$ data $\%>\%$ mutate(home_visitor =

conditional
statement

dplyr

data clean $=$ data $\%>\%$ mutate(home_visitor =

variable

dplyr

$\begin{aligned} \text { data_clean }= & \text { data } \%>\% \\ & \text { mutate (home_visitor }=\end{aligned}$

dplyr

$\begin{aligned} \text { data_clean }= & \text { data } \%>\% \\ & \text { mutate (home_visitor }=\end{aligned}$

dplyr

$\begin{aligned} \text { data_clean }= & \text { data } \%>\% \\ & \text { mutate (home_visitor }=\end{aligned}$

dplyr

$\begin{aligned} \text { data_clean }= & \text { data } \%>\% \\ & \text { mutate (home_visitor }=\end{aligned}$

dplyr

data_posey_clean = data_posey

dplyr

data_posey_clean = data_posey \%>\%

dplyr

data_posey_clean $=$ data_posey \%>\%
inner_join(
two table verb
data_posey_clean = data_posey \%>\%

two table data frame verb
data_posey_clean = data_posey \%>\% inner_join(data_clean)
two table data frame verb
data_posey + data_clean = data_posey_clean

date	opponent
20100529	ARI
20100530	ARI
20100531	COL
20100601	COL

date	day_of week
20100405	Mon
20100406	Tue
20100529	Sat
20100530	Sun

date	opponent day_of week	
20100529	ARI	Sat
20100530	ARI	Sun

data_posey_clean = data_posey \%>\% inner_join(data_clean)
two table data frame verb

data_posey		data_clean		data_posey_clean		
date	opponent	date	day_of_week	date	opponent	day_of week
20100529	ARI	20100405	Mon	20100529	ARI	Sat
20100530	ARI	20100406	Tue	20100530	ARI	Sun
20100531	COL	20100529	Sat			
20100601	COL	20100530	Sun			

dplyr
data_posey_clean = data_posey \%>\% inner_join(data_clean)
two table data frame verb
data_posey + data_clean = data_posey_clean

date	day_of_week	date	opponent	day_of_week
20100405	Mon	20100529	ARI	Sat
20100406	Tue	20100530	ARI	Sun
20100529	Sat			
20100530	Sun			

dplyr

data_figs_sum = data_figs

dplyr

data_figs_sum = data_figs \%>\%

dplyr

dplyr

data_figs_sum = data_figs \%>\% group_by(allstar_break)

dplyr

data_figs_sum = data_figs \%>\%

dplyr

data_figs_sum = data_figs \%>\%

dplyr

data_figs_sum = data_figs \%>\%

dplyr

data_figs_sum = data_figs \%>\%

ggplot2

allstar.plot = ggplot(data_figs_sum,

$$
\begin{aligned}
\text { aes }(\mathrm{x} & =\text { allstar_break, } \\
\mathrm{y} & =\text { wins_perc }))
\end{aligned}
$$

ggplot2

allstar.plot = ggplot(data_figs_sum,

$$
\begin{aligned}
\text { aes }(x & =\text { allstar_break } \\
y & =\text { wins_perc)) }+
\end{aligned}
$$

ggplot2

allstar.plot = ggplot(data_figs_sum,

$$
\begin{aligned}
\text { aes }(x & =\text { allstar_break } \\
y & =\text { wins_perc) })+
\end{aligned}
$$

geom_bar(

ggplot2

allstar.plot = ggplot(data_figs_sum,

$$
\begin{aligned}
\text { aes }(x & =\text { allstar_break } \\
y & =\text { wins_perc }))+
\end{aligned}
$$

geom_bar(stat

ggplot2

allstar.plot = ggplot(data_figs_sum,

$$
\begin{aligned}
\text { aes }(\mathrm{x} & =\text { allstar_break, } \\
\mathrm{y} & =\text { wins_perc }))+
\end{aligned}
$$

ggplot2

allstar.plot = ggplot(data_figs_sum,

$$
\begin{aligned}
\text { aes }(\bar{x} & =\text { allstar_break, } \\
y & =\text { wins_perc }))+
\end{aligned}
$$

geom_bar(stat = "identity") +

scale for the
y-axis

